Prediction of burn-on and mould penetration in steel casting using simulation

نویسندگان

  • B. E. Brooks
  • C. Beckermann
  • V. L. Richards
چکیده

Burn-on and penetration defects in steel casting are principally caused by localised overheating of the sand mould or cores. Such overheating can cause liquid metal to compromise the mould surface and entrain onto the surface of the mould. A method has been developed to predict likely burn-on and penetration defect locations as part of a standard casting simulation. The method relies on determining, from simulation results, the locations where the mould is above a certain critical temperature. The critical temperature is generally above the temperature at which the steel is fully solidified. By measuring the time periods during which these locations in the mould are above the critical temperature, burn-on and penetration defects can be predicted. The method is validated through comparison with previous experimental data. Several parametric studies are conducted to investigate the sensitivity of the predictions to the choice of the critical temperature, the interfacial heat transfer coefficient between the steel and the mould, the pouring temperature, and the mould material. The results of one case study are presented where burn-on or penetration defects observed on a production steel casting are successfully predicted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components

The liquid metal flow and the solidification behaviours in a multi-cavity casting mould of two automotive cast parts were simulated in three dimensions. The commercial code, FLOW-3D® was used because it can track the front of the molten metal by a Volume of Fluid (VOF) method and allows complicated parts to be modeled by the Fractional Area/Volume Obstacle Representation (FAVOR) meth...

متن کامل

MATHEMATICAL MODELLING OF THE EFFECT OF FOAM DEGRADATION ON MOULD FILLING IN THE GREY IRON EPC PROCESS

In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the Lost Foam Casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A Computati...

متن کامل

Effect of mould expansion on pattern allowances in sand casting of steel

For steel castings produced in sand moulds, the expansion of the sand and have a significant impact on the final size and shape of the casting. Experiments are conducted using a cylindrical casting to study this effect for different sands (silica and zircon) and different sand binder systems (phenolic urethane and sodium silicate). The type of sand has a significant effect on the final casting ...

متن کامل

An Investigation on Mold Powders Properties Consumed in Iran

   This paper describes the work done between IUST and two Iranian steelworks to evaluate and review the performance of mould fluxes in current use for continuous casting. Calculations have been performed to compare actual values of powder consumption, viscosity and break temperature of the fluxes in current use with required values derived from published empirical rules for casting conditions....

متن کامل

Mathematical Simulation for the Effects of Flow Control Devices in a Six- strand Tundish in Continuous Casting of Steel Billet

The method of continuous casting of steel is now often used in the metallurgical industry, due to the increasing demand for the production of high – quality steel. An important device of continuous casting machine is the tundish, in which a stabilized steel flow has a crucial effect on the quality and efficiency conditions of the continuous casting process. In this study fluid flows in a six – ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007